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Abstract—Battery energy storage is becoming an important
part of modern power systems. As such, its operation model
needs to be integrated in the state-of-the-art market clearing,
system operation and investment models. However, models that
commonly represent operation of a large-scale battery energy
storage are inaccurate. A major issue is that they ignore the
dependency of the charging power on the battery state of energy.
Consequently, market players might suffer great monetary losses
for not being able to follow their day-ahead schedule and/or
deliver the scheduled reserves.

In order to bridge the gap between very detailed low-level
battery charging constraints and high-level battery operation
models used in the literature, this paper examines a dependency
of battery charging ability on its state of energy. It proposes a
laboratory procedure, which can be used for any battery type and
technology, to obtain this dependency. It also formulates an accu-
rate linear battery charging model, which closely approximates
the real-life battery charging constraints. The proposed battery
charging model is compared against the models commonly used
in the literature. Battery operation schedules obtained by all the
models are compared against experimentally obtained results in
order to assess the value of the proposed model in real life.

Index Terms—Battery energy storage, battery charging, elec-
tricity market, laboratory verification.

I. INTRODUCTION

Massive integration of renewable energy sources has se-
vere implications on power system scheduling and opera-
tion. Namely, reduced online dispatchable generation capac-
ity might not be able to deal with inherent variability and
uncertainty of the output of renewable generation. Energy
storage is a new resource that can perform load-following
tasks and provide flexibility to the power system. Although
energy storage technology has been a part of the power system
for many decades in form of pumped hydro power plants,
battery energy storage has become attractive due to declining
prices, fast response and modularity of batteries. Department
of Energy’s Global Energy Storage Database as of November
2017 reports 725 operational battery energy storage projects
worldwide with overall capacity of 1,500 MW [1]]. This is in
line with Navigant’s report from 2014, which forecasts a rapid
increase of installed battery storage capacity to 14,000 MW
in 2022 [2].
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A. Literature Review

Since utility-scale battery storage has only been around
for couple of years at best, there is a lack of publicly
available data on battery storage operation. This results in
fairly simple battery models being used within the power sys-
tem economics community. A transmission-constrained unit
commitment model expanded with battery energy storage is
presented in [3]. This model simulates day-to-day operation
of a vertically integrated power system in order to make near-
optimal investment decision in energy storage. In [4], the au-
thors use large-scale batteries to implement post-contingency
corrective control actions. Distributed batteries are used to
preserve system stability after a contingency and to provide
required time for redispatch of generators. This work is
expanded with intertemporal constraints in [3f], where batteries
provide corrective control in a unit commitment formulation.

Battery energy storage is often paired with wind farms to
provide stable output and improve market bidding outcomes.
A coordinated wind farm-battery operational dispatch that con-
siders wind uncertainty is proposed in [6]. Statistical analysis
of the distribution of wind output forecast errors is used to
determine optimal battery power capacity, while the optimal
energy capacity is chosen ex ante, based on the net present
values of investments. On the other hand, [7]] presents a control
methodology for a wind farm and a battery storage to provide
primary and secondary frequency control. A feedback control
of the battery state of charge is used to reduce the size and
extend the lifetime of the battery storage.

Batteries are also used in microgrid investment and opera-
tion models. A model that finds the optimal mix of renewable
generation and battery capacity for an isolated microgrid is
presented in [8]]. Robust optimization approach is used to
accommodate uncertainty related to demand and output of
renewable generation. The case study examines both li-ion
and lead-acid battery technologies. Optimal microgrid bidding
strategy in the day-ahead market is proposed in [9]. Uncer-
tainty related to market prices and outputs of intermittent re-
newable generation is tackled using a hybrid stochastic/robust
optimization.

Battery charging/discharging models are also essential for
scheduling the demand of electric vehicles. Many papers,
such as [[10] and [11]], formulate optimal electric vehicle
aggregator bidding models in electricity markets. In these
papers, aggregator’s objective is to minimize charging cost for
its fleet. Since it is assumed that the aggregator can influence
market prices, optimal bids are determined in the upper-level
problem, while the market clearing is simulated in the lower-
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level problem. On the other hand, in [12]] an aggregator of
electric vehicles is considered to be a price taker, i.e. it cannot
influence market prices. It performs arbitrage between the
day-ahead and real-time markets. All three electric vehicle
aggregator models, [10]— [12]], consider uncertainties related to
renewable generation and behavior of electric vehicle drivers.

Another line of research focused on electric vehicle batteries
are electric vehicle battery swapping stations. Optimal oper-
ation and services scheduling of an electric vehicle battery
swapping station is modeled in [[13[]. This model examines
scheduling of the battery swapping station services considering
the prices in electricity markets, as well as the expected
battery swap demand. A method for locating and sizing battery
swapping stations in distribution networks is presented in
[14]. This method maximizes net present value of a battery
swapping station investment project considering the life cycle
cost criterion.

B. On Battery Charging Models

All the papers in the literature review above consider battery
energy storage modeling at the high level, meaning that they
integrate a simple representation of physicochemical battery
constraints into large operational or investment models. On the
other hand, there are many detailed battery models, which aim
at describing the processes within batteries as accurately as
possible. However, such models are not suitable for integration
in the high-level optimization problems due to their com-
plexity. A good overview of detailed battery models is given
in [15], which classifies them as: electrochemical, electrical-
circuit, stochastic and analytical models. For instance, a very
detailed electrochemical model for li-ion batteries has been
developed by Doyle et al. [16]. This model is implemented
in a computer program called Dualfoil [17] and it requires
over 50 battery-related input parameters (e.g. thickness of the
electrodes), but is very accurate and therefore often used for
benchmarking other battery models [[15]. In this paper we use
experimental results which are considered more reliable than
any computer simulation.

A simple battery model developed for usage in energy
simulations and embedded smart control systems is presented
in [18]]. Major drawback of this approach is that it considers
only the constant-current phase of the battery charging charac-
teristic and neglects the constant-voltage phase, which is nor-
mally present whenever a battery is being fully charged. The
model proposed in [[18]] is compared to a kinetic battery model
(KiBaM) in [19]. The KiBaM model is actually a first-order
approximation of the diffusion model from [20]], as shown in
[15]. However, due to their complexity, neither of these models
is suitable for usage in the high-level optimization problems.

An approach most similar to ours in presented in [21],
where a MILP battery model with piecewise linear con-
straints is applied to energy arbitrage. However, there are
some important differences. Authors of [21] start from a low-
level battery model that takes into account thermodynamics,
charge transfer, mass transport, etc. The model parameters
are obtained from the manufacturer’s specification sheets and
the final model is validated only by comparison with the

manufacturer’s discharge voltage characteristic. On the other
hand, we use experimental data obtained in our own laboratory,
which provides an exhaustive insight into battery’s behaviour
and characteristics. We believe that our constraints are more
fundamental and realistic, as the model in [21]] uses the same
constraints for both charging and discharging power limits,
which we show are substantially different.

C. Contributions and Paper Organization

This paper formulates a linear program that captures vari-
able battery charging limit and can be incorporated in any
battery operation and/or investment planning model. It bridges
the gap between the high-level studies, i.e. operation and in-
vestment models, that require simple battery operation models
on one hand, and detailed laboratory models that correctly
capture the physics of the battery on the other hand. A
dedicated laboratory testbed is developed to accurately control
battery charging and discharging process. The testbed contains
an advanced tailor-made bidirectional AC-DC converter with
precise current and voltage measurements. The converter en-
ables performing rigorous charging and discharging patterns.
In this research, we use it to obtain an accurate battery
charging curve needed to derive correct input parameters for
the battery model. The three battery models tested in this
paper are: (i) the constant charging power limit, as commonly
found in research studies; (ii) charging power limit with linear
reduction at the constant voltage part of the charging curve,
as proposed in [12f]; (iii) piecewise linear approximation of
the available charging energy, as proposed in this paper. To
demonstrate the effectiveness, these three battery models are
incorporated into an optimal energy storage market bidding
model. The quality of the solutions is verified by applying
the obtained charging/discharging schedules to a battery at the
laboratory testbed in order to check their feasibility.

Contributions of the paper are:

1) Definition of a laboratory procedure for obtaining accu-
rate dependency of the battery charging capacity on its
state of energy.

2) Formulation of a piecewise linear approximation of the
battery charging capacity suitable for high-level opera-
tional and investment models.

3) Analysis of the feasibility and cost-effectiveness of the
obtained charging/discharging schedules within the op-
timal energy storage bidding model using the laboratory
testbed.

The rest of the paper is organized as follows. Section
describes our laboratory testbed, while Section provides
an insight in some fundamental li-ion battery characteristics
important for understanding the proposed battery charging
model. Optimal battery energy storage bidding model using
different battery charging constraints is formulated in Section
[Vl Case study with laboratory verification of the obtained
battery charging/discharging schedules is presented in Section
Finally, the conclusions and recommendations are provided
in Section [VIl
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II. LABORATORY TESTBED

For the purpose of experimenting with various batteries, an
advanced grid-tied bidirectional AC-DC converter has been
constructed. This specially designed converter allows imple-
mentation of any battery charging/discharging pattern. The
basic specifications of the converter are:

« Nominal output power: 1 kW

o Output voltage: 0 to 20 V DC
e Output current: -50 to 50 A DC
o Input: 50 Hz, 230 V AC

Input/output current/voltage are measured by analog signals
(0-10 V DC) and digital signals (isolated USB or RS-485).
Resolution of the voltage and current measurements is 0.6
mV and 5.8 mA. Accuracy is improved by the remote battery
voltage sensing.

The converter is connected to the host PC using National
Instruments (NI) equipment. Communication takes place over
NI cRI(ﬂ via Ethernet, while the converter is supervised
and controlled over a SCADAEl system implemented in NI
LabVIEWF]

The converter has a three-stage topology which consists of:
(1) a bidirectional grid inverter; (ii) a resonant high-frequency
(HF) transformer; and (iii) an output bidirectional interleaved
buck-boost converter. This topology is shown in Fig. [I}

Physical realization of the converter is shown in Fig. [2]
where each part is marked with a different color. Note that the
buck-boost part is for the most part not visible, as it is located
under the control board. Connection between the control board
and the NI cRIO is clearly visible. Cable that connects the
converter to the grid can be seen in the lower left part of
the figure (marked orange), while the 18650 li-ion battery cell
under test is also located on the left-hand side.

We consider li-ion as the most popular battery technology
today due to its declining prices and favorable characteristics
(e.g. high energy density, fast charging possibility etc.) [22].
The described converter and the 18650 li-ion cell have been
used to obtain all the experimental results presented in this
paper. Since the experiment is focused on the battery charac-
teristics, all the voltage and current measurements are taken
at the battery side of the converter, i.e. at the li-ion cell under
test.

Voltage/current

Voltage/current measurements/
measurements setpoints
it -
I
Grid Single-phase HF Buck-Boost Battery

inverter transformer
Fig. 1. Topology of the bidirectional AC-DC converter converter

IcRIO (compact Reconfigurable Tnput Output) is a real-time industrial
controller
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3LabVIEW (Laboratory Virtual Instrument Engineering Workbench)
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Fig. 2. Physical realization and parts of the bidirectional AC-DC
converter

III. L1-1ION BATTERY CHARACTERISTICS

Li-ion batteries are normally charged with the constant-
current-constant-voltage (CC-CV) characteristic [23]], [24].
This characteristic consists of two phases. In the first phase,
the charging current is constant, while the voltage gradually
rises to a certain predefined threshold (charging voltage). In
the second phase, the voltage is kept constant at the threshold
value while the current gradually decreases. Full charge is
reached after the current drops to cca. 3% of the battery’s
Ampere-hour (Ah) rating [24]. Experimentally obtained bat-
tery charging characteristics can be seen in Fig. [3] for the
charging currents of 1C and 0.2C. C-rate is determined by
the battery capacity in Ah. For the battery cell at hand, the
measured capacity amounts to 2.8 Ah, so the current of 1C
corresponds to 2.8 A, while 0.2C corresponds to 0.56 A.
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(b) Charging current 0.56 A (0.2C)
Fig. 3. Battery charging characteristic

Battery state of charge is a measure of the amount of charge
stored in a battery with respect to the charge that the battery
contains when fully charged. State of charge gives the user
an indication of how much longer a battery will last before
it needs recharging [25]]. In consumer electronics and some
electric vehicles state of charge is displayed in percentages.
In real-time implementations, battery state of charge is not
straightforward to determine and there is a number of papers
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that tackle this problem with an aim to increase accuracy of the
state of charge estimation. A review of different approaches
and methods for state of charge estimation can be found in
[26], [27]]. The most common method for state of charge
estimation is coulomb counting, which is based on integration
of the charging/discharging current, see e.g. [28]]. Coulomb
counting method can be described by the following relation:

1 t
sorf =soely +a'- g [ en'(ryan
100 [* o M
T t,1diSI(T)dT7

where soczrD is state of charge (expressed in percentages), t
index of time periods, ' coulombic efficiency, C! the battery
charge capacity (Ah), ch! (A) and dis' (A) charging and
discharging currents (both always assumed positive). Equation
counts Ampere-hours (Ah) that enter and exit the battery’]
In literature, one may often find the term state of charge being
used for counting Watt-hours (Wh). While similar, counting
Ah and Wh is not the same, so to avoid this discrepancy we
adopt the term state of energy, which is used in [12], [29].
Furthermore, using state of energy instead of state of charge
is justified by the fact that participants in energy markets trade
energy (Wh) and not electric charge (Ah). State of energy is
determined by the relation analogous to (I)), as follows:

1 t
soel® =soel® | +nF - %/ ch(r)dr
100 [* - @
—cE ) dis(7)dr,

where soe/° is state of energy (expressed in percentages),
n® energy efficiency, C” the battery energy capacity (Wh),
ch (W) and dis (W) charging and discharging powers (both
always assumed positive).

If a battery is a part of the power system, it interacts with it
in terms of power and energy. Therefore, eq. (2) is transformed
to accommodate state of energy (soe;) in Wh

t t
soe; = soe;_1 + nE/ ch(r)dr — / dis(t)dr. (3)
t—1 t—1

Battery efficiency can be divided into: (i) coulombic, (ii)
voltaic, and (iii) energy efficiency. Coulombic efficiency 7',
used in @), is the ratio of the total charge extracted from
the battery (Ah) to the total charge injected in the battery
(Ah) over a full charge/discharge cycle [24]]. Voltaic efficiency,
nV, is the ratio of the average discharging voltage and the
average charging voltage [24f]. Charging voltage is always
higher than the discharging voltage due to the battery’s internal
resistance. Fig. [ displays experimentally obtained battery
charging and discharging voltage curves forming a kind of
hysteresis. Higher charging currents shift charging voltage
further upwards and higher discharging currents shift discharg-
ing voltage further downwards. This indicates that voltage
efficiency reduces with higher (dis)charging currents. Finally,
energy efficiency ¥, used in (@) and (3)), can be defined as
the ratio of the total energy extracted from the battery (Wh)
and the total energy injected in the battery (Wh) over a full

4One coulomb equals one Ampere-second, thus the terms coulomb counting
and coulombic efficiency.

4
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Fig. 4. Battery voltage hysteresis
charge/discharge cycle. Energy efficiency is the lowest of the
three efficiencies as it encompasses both coulombic and voltaic
efficiency.

Efficiencies are very dependent on the value (or profile)
of the charging/discharging currents. This is especially the
case for voltaic and, consequently, energy efficiency, as can
be concluded from the above discussion and Fig. [ Physical
explanation for the efficiency variability are losses that are
always present to a certain extent as a consequence of the
battery’s internal resistance. Naturally, higher currents cause
higher losses. Therefore, energy stored in the battery is always
lower than the energy input during a (full) charge cycle.
Likewise, energy extracted from the battery during a (full)
discharge cycle is always lower than the energy that was stored
in the battery. In order to account for this, the overall (round-
trip) energy efficiency of the battery is often decomposed
into the charging and the discharging efficiency. This allows
one to take into account the influence of charging current on
charging efficiency (and discharging current on discharging
efficiency) by calculating power losses over the battery’s
internal resistance (see e.g. [30]]).

In this paper we use single overall energy efficiency 7,
which is accurately determined from the experimental data
as follows. A full charging/discharging cycle is applied to
the battery while measuring electrical power charged ch (W)
and discharged dis (W). Round-trip energy efficiency is then
obtained as:

e = fond dis(t)dr @
fOch ch(r)dr ’

where Ty and T, are times to fully discharge and charge
the battery, respectively. State of energy calculated by is
then always the useful energy that can be withdrawn from
the battery. Knowing n® is important as it determines the
amount of energy that has to be purchased in the market during
the low-price time periods in order to be able to deliver the
desired amount of energy during the high-price time periods.
In the considered case, nE for the desired combinations of
charging/discharging currents should be determined from the
most recent measured data.
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IV. BATTERY OPERATION FORMULATIONS

In order to compare battery charging models from the
literature with the proposed one, we formulate a rather simple
battery energy storage bidding model. Only the day-ahead
energy market is considered, where battery energy storage
maximizes its profit by performing energy arbitrage. The
battery storage is a price taker and cannot affect market prices,
which are known in advance, i.e. no price uncertainty is
considered. The following three subsections formulate three
battery storage models which differ by the way they incorpo-
rate battery charging constraints: (i) constant charging power
limit, which is the most commonly used in literature, (ii)
charging power limit with linear reduction, as proposed in
[12], and (iii) variable charging energy limit, which is the one
proposed in this paper.

A. Model with Constant Charging Power Limit (Baseline
Model)

Objective function of the optimal battery energy storage
bidding problem is to maximize profit by exercising arbitrage:
maximizez At - (disy — chy) - At (5)
teT
where \; are hourly market prices, dis; is power sold in the
market, and ch; power purchased in the market. Objective
function (3) is constrained by:

chy < P, VteT (6)

disy < PY, vteT (7)

soey = soes_1 + At - chy - 0¥ — At - disy, Vte T\1 (8)
soe1 = soeqg + At - chy - nE — At - disq, 9)

soey <CE wteT (10)

soer > soey, (1

chy,dise, soey >0, VteT. (12)

Constraints (6) and represent battery charging and
discharging constraints, where P* and P% are parameters
representing maximum battery charging and discharging pow-
ers. Equation (8] calculates the battery state of energy, soey,
based on the state of energy in the previous time period
and (dis)charged energy, while considering battery energy
efficiency n®. At is a length of the time period, e.g. 1 h,
used to obtain energy quantity from the power variables ch;
and dis;. Equation () calculates the state of energy at the
first time period based on the initial state of energy soeg.
Equations (8) and () correspond to (@), with the difference
that integrals are calculated by the rectangle method which
renders (8)-(9) algebraic. Constraint limits the state of
energy using parameter C* (battery energy capacity in Wh),
while (TT)) ensures that the final state of energy is not lower
than the initial one. Finally, (T2) imposes non-negativity on
the variables.

Model (B)-(I2) is the most commonly used (and simplest)
battery storage model in the power system economics litera-
ture, used in [[3]]- [11]], [13]], [14], and many others. From now
on, this model is referred to as the baseline model that needs

to be outperformed. The opportunity for enhancement lies in a
more rigorous modeling of the charging limit, which reduces
for state of energy levels above a certain value. This is a direct
result of the battery charging characteristic, which consists of
two distinctive parts, constant-current and constant-voltage, as
shown in Fig. 3] As battery charges with constant current, its
voltage increases. Once the battery reaches its voltage limit,
the current starts decreasing to keep the battery voltage at the
limit (4.35 V in Fig. [3). Consequently, the charging power,
obtained by multiplying the current and the voltage, reduces
drastically as the energy stored in the battery approaches its
maximum value.

B. Model with Reducing Charging Power (Linear CC-CV
Model)

A more accurate representation of the battery charging
power constraint (6) is proposed in [12], where the authors
acknowledge the reduced charging capacity after switching to
the constant-voltage mode when charging a battery.

The linear form of the charging power dependency on the
battery state of energy is formulated as in [12]:

chy < P, VteT, (13)

C® — s0e;
hy<pPh. __— "7t \peT 14
Chy >~ CE — SOECC’CV’ €4, ( )

where SOE““Y is a parameter denoting the state of energy
at which the constant-current switches to the constant-voltage
charging scheme. Constraint sets maximum charging
rate for all states of energy, while constraint imposes a
stricter charging limit for states of energy above SOE®®°".
The stricter charging limit linearly decreases from P at
soe; = SOE“Y to zero at soe; = CP.

From now on, this model is referred to as the linear CC-
CV model. The formulation of the bidding problem using the
linear CC-CV model is:

Maximize ()
subject to

_@7@Dv@

C. Model with Energy Charging Limit (Energy Charging
Model)

A new representation of the battery charging capacity con-
straint proposed in this paper is based on curves in Fig. [3]
which display battery’s ability to absorb energy as a function
of the current state of energy. Asoe indicates how much energy
can be charged into the battery in the following time step. One
hour is chosen as a standard time step used in most electricity
markets, but other time steps can be used analogously. Asoe
characteristic in Fig. [5]is derived from the CC-CV characteris-
tic in Fig. [3] For lower charging currents (e.g. 0.2C), during the
constant-current phase, the Asoe characteristic slowly rises.
As the current decreases, the ability of the battery to absorb
energy reduces. For higher charging currents (e.g. 1C) there
is no rising part of the Asoe curve, since the constant-current
phase is shorter than one hour.

Nonlinear soe-Asoe curves from Fig. [5] can be approxi-
mated by piecewise linear functions. An example is shown in
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Fig. 5. Battery hour-ahead energy charging ability
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Fig. 6. Piecewise linear approximation of a soe—Asoe function.

Fig.[6] where the dashed black line represents a nonlinear func-
tion being approximated by the solid blue segments. Pieces
of the blue curve in Fig. [6] have monotonically decreasing
slope coefficients as the state of energy increases. This is
an important property since higher energy charging ability
increases the value of the objective function (3). Therefore,
this piecewise linear approximation can be modeled without
using binary variables as follows:

I-1
soe; = Zsoem, VteT (15)
i=1
soey ; < Ri+1 — Ri, Vt € T,’L el (16)
I-1
Fiqn — F
Asoe; = Fy + ———-50¢4_1,4, vVteT (17)
; Riy1 — Ry
Asoe;
chy < ——, VteT (18)
= OALgE

Equation (T3) decomposes battery state of energy into I —1
segments, where I is the number of breakpoints of the piece-
wise function in Fig. [} Energy limit of each state of energy
segment, soe; ;, is enforced in constraint . Equation
determines maximum energy charging ability of the battery at
each time period, while (I8) represents corresponding power
constraint. If the battery is empty, its energy charging ability
is equal to 7. If a portion of any soe;_1 ; is greater than zero,
it will affect the battery energy charging ability. Since reduced
energy charging ability has a negative impact on the objective
function value, auxiliary variables soe; ; will start filling from
the lowest ¢ index. For example, in Fig. [f] when charging an
empty battery, segment b; will be used first, as it increases the
energy charging ability of the battery. Next, segment by will
be used as it reduces the battery charging ability less than
segment bs.

From now on, this model is referred to as the energy
charging model, as it considers the energy charging ability

instead of the power limit. Formulation of the bidding problem
using the energy charging model of the battery is:

Maximize (@)
subject to

@ — (1), (13) — (18)

In some applications it may happen that the higher battery
charging ability reduces the objective function value. An
example might be a strategic demand response bilevel model
where battery storage is modeled as a follower in the lower-
level problem. Also, it is possible that all the piecewise slopes
of the approximated soe—Asoe function are not monotonically
decreasing as the state of energy increases (this can happen
if a curve is approximated by many segments). In both cases,
the soe—Asoe curve needs to be approximated using binary
variables. The proposed formulation based on Special Order
Sets 2 (SOS2) is available in the Appendix.

In summary, we propose the following procedure for ob-
taining the energy charging model:

1) record battery charging/discharging characteristic for the
desired charging/discharging currents;

2) obtain charging/discharging energies by integrating the
charging/discharging power in time;

3) determine battery energy capacity and overall energy
efficiency;

4) derive the time—soe curve from the charging energy
characteristic;

5) derive soe—Asoe curve from the time—soe curve;

6) approximate nonlinear soe—Asoe curve by a piecewise-
linear function in order to obtain parameters R; and F;

required in (T6) and (T7).

V. CASE STUDY

In this case study, optimal battery bidding models from
Sections IV.A-C are applied to a fictional 10 MWh battery
acting in the EPEX day-ahead market [31]]. Day-ahead energy
prices on January 15, 2018, which are used in simulations,
are provided in Table |} The obtained (dis)charging schedules
of the baseline model, the linear CC-CV model and the
proposed energy charging model are verified for feasibility
in a laboratory experiment. In this experiment, the assumed
large-scale battery of 10 MWh energy capacity is represented
with a single li-ion battery cell with 10 Wh energy capacity.
Naturally, there are differences in voltage and current levels
when using 10 Wh and 10 MWh battery. Percentage of losses
in the larger battery may increase as a consequence of higher
resistance due to interconnections between battery cells and
packs. However, even if these differences are not negligible,

TABLE 1. PRICES IN EPEX ON JANUARY 15, 2018

Hour Price Hour Price Hour Price Hour Price
(€/MWh) (€/MWh) (€/MWh) (€/MWh)
1 29 7 41 13 50 19 54
2 31 8 54 14 49 20 52
3 28 9 53 15 38 21 46
4 23 10 48 16 37 22 37
5 25 11 50 17 37 23 41
6 27 12 50 18 43 24 36
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the methodology introduced in our paper can still be used to
assess battery of any size.

In order to be as realistic as possible, a new experiment is
performed for every (dis)charging cycle, i.e. no experimental
data is used more than once, even if the same (dis)charging
pattern repeats. This accounts for uncertainties and measure-
ment errors which are inherent to real battery operation.

In order to examine the effects of battery’s energy-to-power
ratio, i.e. its C-rate, we conduct the same simulations and lab-
oratory experiments for 1C and 0.2C, resulting in theoretical
battery (dis)charging times of 1 h and 5 h, respectively.

Overall battery energy efficiency n®* is determined exper-
imentally by virtue of @) and the following values were
obtained:

o 1C case: n = 0.81 (full cycle: 1C charge, 1C discharge),

e 0.2C case: n¥ = 0.866 (full cycle: 0.2C charge, 0.2C

discharge).

As discussed in Section energy efficiency of the battery
depends on the charging/discharging current, so including
varying efficiency in the optimization problem would not be
straightforward. Nevertheless, as shown in the sequel, battery
energy storage is almost exclusively operated at maximum
allowed currents of 1C and 0.2C. Therefore, we consider these
fixed efficiencies to be credible parameters in our optimization
models.

Experimental charging energy is obtained by integration of
the measured charging power. This charging energy is then
corrected for the overall energy efficiency (n) and scaled to
0-10 MWh span in order to simulate a 10 MWh battery. Values
obtained in this fashion represent experimental charging en-
ergy and they are displayed by green bars in Figs. (positive
values are for charging and negative for discharging). Note
that values of experimental charging energy for a certain hour
can never exceed those determined by the simulation, i.e. the
battery cannot charge more energy than scheduled to purchase.
On the other hand, experimental charging energy lower than in
simulations is a consequence of the battery’s physicochemical
constraints.

The battery is considered to be at 50% state of energy at
the beginning of the optimization horizon and is required to
end up at that level.

Parameter SOE“>®Y used in the linear CC-CV model is
determined from experimental charging characteristics and its
values are:

e 1C case: SOE“®Y = 55.5%,
e 0.2C case: SOE“Y = 89.7%.

As for the energy charging model, nonlinear soe—Asoe
curves from Fig. [ are approximated by three and four
piecewise linear curves, for 1C and 0.2C cases, respectively.
Parameters R; and F; which define piecewise linear approxi-
mation are as follows:

e 1C case:
Ry _4(%) =[0 23 94.7 100],
Fi_4(%) =[82.3 65.8 4.6 0.0],

e 0.2C case:
R1_5(%) =[0 74 82 92.6 100],
Fi_5(%) =[17.8 19.4 15.4 7.5 0.0].

7

Since these piecewise approximations have monotonically
decreasing slopes, energy charging model proposed in is
readily used. This model does not include binary variables and
therefore it does not incur additional computational burden.
Using IBM ILOG CPLEX 12.6.2. under GAMS 24.5.4. on an
8 GB RAM machine with INTEL i7-5500U CPU at 2.4 GHz,
all the models are solved instantly.

A. 1C Maximum Charging Rate

This subsection presents the case study results for the
maximum (dis)charging current of 1C. Fig. [/a] displays results
for the baseline model. Considering the charging power limit
in (6), this model assumes that the battery can be fully charged
within one hour. Experimental results, however, show that only
about 8.2 MWh of electricity can in reality be charged within
an hour. As a result, using the baseline model to schedule
the battery energy storage in the day-ahead market leads to
significant errors. In this case, energy that can be stored and
delivered is 14.6% lower than assumed by the model (see Table

(.

Fig. displays battery charging schedule for the linear
CC-CV model. This model better describes battery charging
constraints and there are no deviations of the model output
from the experimental data (state of energy graphs coincide).
However, results from Table [[Ij suggest that the linear CC-
CV model might be overly conservative, as the total energy
stored and delivered (obtained by simulations) is lower than
for the other two models (24.62 vs. 25.0 and 24.97). This
conservatism can be overcome by introducing a parameter
with a value greater than 1 to multiply the right-hand side
of constraint (I4). The best resulting profit of €257.67 is
achieved if the value of this parameter is 1.4. However, the
optimal value of this parameter can be determined only ex
post and is not based on any actual battery parameter.

Results of the proposed energy charging model are dis-
played in Fig. The total simulated delivered energy
amounts to 24.97 MWh. The deviation from 25.0 is caused
by piecewise linear approximation of the soe—Asoe curve.
Comparison of the simulation and the experimental results
show a 0.4% difference in the delivered energy, as seen
in Table [ (24.97 MWh vs. 24.87 MWh). This deviation
is the result of the aforementioned uncertainties related to
real battery operation, as separate experiments are used to
obtain the model constraints and case study results. However,
the overall delivered energy (experimentally obtained) is the
highest among the three models.

An overview of the delivered electricity and the resulting
profit for all three models is shown in Table [l The resulting
profit is calculated as follows. The day-ahead profit, obtained
in the simulations, is corrected for the balancing costs at each
hour in the following way (based on the balancing rules set
by the Croatian Energy Regulatory Agency [32]):

o If the day-ahead quantity is fully charged or discharged,

there is no balancing costs.

o If the charging quantity cannot be met, the electricity not

charged is sold at 70% of the purchasing price.

o If the discharging quantity cannot be met, the additional

electricity is purchased at 140% of the day-ahead price.
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Fig. 7. Battery schedules for 1C rate

Since the baseline model cannot meet its charging schedule
at hours 4, 8, 16 and 19, its €272.04 day-ahead profit is
reduced to only €91.02. The linear CC-CV model is able
to fully implement its day-ahead schedule and its simulation
and experimental profits are the same. Due to real battery
operation related uncertainties, the day-ahead profit of the
energy charging model is reduced by €5.07, still resulting
in the highest resulting profit of €259.64.

B. 0.2C Maximum Charging Rate

The battery simulation and experimental schedules for the
three models are shown in Figs. Both the baseline and
the linear CC-CV models are unable to follow the charging

TABLE II. DELIVERED ENERGY AND RESULTING PROFIT COMPARISON
FOR 1C RATE

. Linear Energy
Model Baseline CC-CV | Charging
Delivered Simulation 25.00 24.62 24.97
energy (MWh) | Experiment 21.36 24.62 24.87
enercg};“(%j’[‘:w) Experiment | 21.36 24.62 24.87
Resulting Simulation 272.04 249.51 264.71
profit (€) Experiment 91.02 249.51 259.64

schedule in hours 4 and 5. Consequently, the battery state of
energy at the end of hour 6 is lower than needed and the
discharging quantity at hour 13 cannot be met. Furthermore,
insufficient charging ability in hours 22 and 24 result in the
final state of energy of 41.2% (for both baseline and CC-CV
models), which means that constraint (TI)) is not met in real
operation. The main reason why the baseline and the linear
CC-CV models underperform for 0.2C charging rate is the
slowly rising power curve shown in Fig. Bb] Similarly as the
baseline model, the linear CC-CV model does not take this into
account and allows the highest charging power throughout the
constant-current phase. However, in reality, when a battery
is empty the charging power in the first hour is lower than
the maximum charging power and increases with the state
of energy until the beginning of the constant-voltage phase.
This is clearly visible in hours 15-17 in Figs. where
the battery cannot be charged as much as anticipated in the
simulations (note that the battery is empty at hour 14). This
effect does not manifest at 1C charging rate of the linear CC-
CV model because the constant-current phase is shorter than
one hour. On the other hand, the proposed energy charging
model is able to respect its day-ahead schedule at all time
periods almost perfectly, resulting in the final state of energy
of 49.9%. The biggest difference between the energy charging
and the other two models occurs in hour 21, where the energy
charging model sells less energy in order to be able to achieve
50% state of energy at the end of the day. The other two
models overestimate battery charging capabilities, sell too
much energy in hour 21 and cannot achieve the desired state
of energy at the end of the day.

Since the battery starts the day at 50% state of energy
and ends the day below this value, the total energy charged
throughout the day is less than the total delivered energy, as
seen in Table (experimental values). In order to account
for this error, it is assumed that the missing energy has to be
purchased in the last hour in which the battery is idle, which
is hour 23, at 140% of the day-ahead price. Other than this,
the profits are calculated as described in Section The
proposed energy charging model achieves the highest profit
of €196.87, which deviates only 0.8% from the simulated

TABLE III. DELIVERED ENERGY AND RESULTING PROFIT COMPARISON
FOR 0.2C RATE

. Linear Energy
Model Baseline CC-CV | Charging
Delivered energy | Simulation 15.00 14.89 14.10
(MWh) Experiment 14.90 14.79 14.07
enegghyar(%i‘z,\,h) Experiment | 14.01 13.91 14.06
Resulting Simulation 202.39 196.79 198.44
profit (€) Experiment 165.05 159.59 196.87
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profit. On the other hand, the baseline and the linear CC-
CV models have much lower profits (€165.05 and €159.59)
and higher deviations from the simulation results (18.4% and
18.9%, respectively). This is the result of aggressive charging
schedules that cannot be met in the experiment.

VI. CONCLUSION

This paper introduces a laboratory procedure to obtain
accurate dependency of the battery charging capacity on its
state of energy. This dependency is the basis for the proposed
energy charging model introduced in Section [[V-C|

For 1C rate, the baseline model is unable to deliver 14.6%
of its (dis)charging quantities due to oversimplification of the

charging constraint. On the other hand, the linear CC-CV
model is able to fully fulfill its day-ahead schedule. However,
this schedule is over-conservative and the profit of the battery
owner is 3.9% lower than for the proposed energy charging
model. The differences in the resulting profit are even higher
for 0.2C, where the proposed model outperforms the other two
by cca. 20%.

The main reason behind the accuracy of the proposed model
is the inclusion of the soe—Asoe curve in the model, which is
essential for quantifying the energy a battery is able to absorb
within a specific time period.

Future research will be focused on integration of the battery
energy charging model into complex power system economics
models, such as unit commitment and power system expansion
models.

APPENDIX: ACCURATE MIXED-INTEGER FORMULATION

A general piecewise linear soe—Asoe function is formulated
using Special Order Sets 2 (SOS2) in the following way:

I
soe;_1 = ZRi “Ypi, VEeT (19)
i=1
0<wyi<1l, VteT,iecl (20)
I
S yi=1, WteT Q1)
i=1
Y1 bi 1
Yt,2 bt,z
Slem | (22)
Ye,I be.r—1
I-1
> bi=1, VteT (23)
i=1
I
Asoe, =Y Fi-yps, WET (24)
i=1
Asoe;

Equation (T9) defines state of energy at the soe—Asoe curve
at the previous time period, which is used to assess the energy
charging capability in hour {. Parameter R; sets thresholds
in battery’s energy absorption ability (see Fig. [6), while I is
the total number of thresholds (number of breakpoints of the
piecewise linear approximation). ¥; ; is a continuous variable
that takes values between zero and one, eq. @, and defines
which thresholds R, are active. At most two thresholds can
be (partially) active at the same time period. For instance, if
soe; = Ry, then g, o should be equal to one, and all other
Yt equal to zero. In another case, if soe; is halfway between
Ry and Rj3, both y; 2 and y, 3 should be equal to 0.5, and
all other y;; equal to zero. Equation (ZI) therefore sets the
sum of all y;; to one, while eq. (22) ensures adjacency of
the non-zero y;; elements. Binary variable b;; is used to
select the piecewise line segment on which the soe; lies. H
is an I x (I — 1) matrix with values 1 on elements (4,4) and
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(i +1,7), and O otherwise. Since variable b.,; is binary, eq.
(@) allows only one element of b ; to take value one, so only
the adjacent y; elements can be greater than zero. Equation
(24) uses variable y; ; to assign an appropriate value to Asoe;
based on the soe;_; value. After calculating Asoe; in @)-
(24), charging power is limited to the maximum amount of
energy that can be charged in a single time step in constraint

Additional details on using SOS2, commonly used to model
piecewise approximations of single variable functions, can be
found in [33].

If the soe—Asoe curve of the energy charging model is
approximated using SOS2, the formulation of the bidding
problem reads:

Maximize (3]
subject to
- ([12), (19 - @5).
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